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Network-based metaanalysis identifies HNF4A and
PTBP1 as longitudinally dynamic biomarkers for

Parkinson’s disease
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Environmental and genetic factors are likely to be involved in the
pathogenesis of Parkinson’s disease (PD), the second most preva-
lent neurodegenerative disease among the elderly. Network-
based metaanalysis of four independent microarray studies iden-
tified the hepatocyte nuclear factor 4 alpha (HNF4A), a transcrip-
tion factor associated with gluconeogenesis and diabetes, as
a central regulatory hub gene up-regulated in blood of PD
patients. In parallel, the polypyrimidine tract binding protein 1
(PTBP1), involved in the stabilization and mRNA translation of in-
sulin, was identified as the most down-regulated gene. Quantita-
tive PCR assays revealed that HNF4A and PTBP1T mRNAs were up-
and down-regulated, respectively, in blood of 51 PD patients and
45 controls nested in the Diagnostic and Prognostic Biomarkers for
Parkinson’s Disease. These results were confirmed in blood of 50
PD patients compared with 46 healthy controls nested in the Har-
vard Biomarker Study. Relative abundance of HNF4A mRNA corre-
lated with the Hoehn and Yahr stage at baseline, suggesting its
clinical utility to monitor disease severity. Using both markers, PD
patients were classified with 90% sensitivity and 80% specificity.
Longitudinal performance analysis demonstrated that relative
abundance of HNF4A and PTBP1 mRNAs significantly decreased
and increased, respectively, in PD patients during the 3-y follow-
up period. The inverse regulation of HNF4A and PTBP1 provides
a molecular rationale for the altered insulin signaling observed in
PD patients. The longitudinally dynamic biomarkers identified in
this study may be useful for monitoring disease-modifying thera-
pies for PD.

Parkinson’s disease | HNF4A | PTBP1 | network analysis | blood biomarkers

ubstantial efforts have been devoted to the development of
diagnostic strategies for Parkinson’s disease (PD). In partic-
ular, changes in mRNA from cellular whole blood can facilitate
the identification of dysregulated processes and diagnostic bio-
markers for PD (1, 2). Several molecular signatures in blood
have been identified. For example, 22 unique genes were found
differentially expressed in blood of PD patients compared with
healthy controls (1). Likewise, specific splice variants in blood
were associated with PD in samples obtained from two in-
dependent clinical trials (2, 3). In addition, altered expression of
the vitamin D receptor (VDR) in blood and reduced plasma
levels of 25-hydroxy vitamin D; have been associated with PD
(1, 4). Furthermore, plasma levels of the epidermal growth factor
have been associated with cognitive decline in PD (5).
Environmental stressors and genetic factors are most likely
involved in the pathogenesis of PD. Among the genetic factors
associated with PD, mutations in the gene encoding leucine-rich
repeat kinase 2 (LRRK2) are the most common cause of auto-
somal dominant PD (6) and a considerable risk factor in idio-
pathic forms of the disease (7, 8). Given the complex interaction
between environmental and genetic factors in sporadic PD, we
integrated four independent microarray studies from patients
harboring a mutation in the LRRK2 gene (G2019S; glycine-to-
serine substitution at amino acid 2019), sporadic patients, and
untreated PD patients to identify a universal signature in blood

Www.pnas.org/cgi/doi/10.,1073/pnas.1423573112

associated with PD. We performed a transcriptomic and net-
work-based metaanalysis to identify key regulators and poten-
tial diagnostic biomarkers. This is a powerful approach to in-
tegrate gene expression data and to gain insight into complex
diseases (9). The utility of network biology to identify biolog-
ically relevant biomarkers for neurodegenerative diseases has
been demonstrated recently. In this context, network analyses
identified the amyloid precursor protein (4APP) and superoxide
dismutase 2 (SOD2) mRNAs as blood biomarkers of PD (10, 11)
and protein tyrosine phosphatase 1 (PTPNI) mRNA as a di-
agnostic tool for progressive supranuclear palsy (12; reviewed
in ref. 9).

In this study, network-based metaanalysis identified hepato-
cyte nuclear factor 4 alpha (HNF4A) and polypyrimidine tract
binding protein 1 (PTBPI), previously implicated in diabetes, as
the most significant up- and down-regulated genes in blood of
PD patients. These results were confirmed in blood samples
from two independent clinical trials. Relative abundance of
HNF44 mRNA correlated with disease severity in PD patients.
Moreover, longitudinal analysis of HNF4A and PTBPI revealed
that their relative abundance changed over time, thus suggesting
their potential use in tracking the clinical course of PD patients.
Further evaluation of HNF4A4 and PTBPI mRNAs in patients at
risk for PD is warranted.

Results

Metaanalysis of Blood Microarrays in PD. To identify a common
transcriptional signature in blood of PD patients, four microarray

Significance

Development of therapeutic strategies for Parkinson’s disease
(PD) is hampered by the lack of reliable biomarkers to identify
patients at early stages of the disease and track the therapeutic
effect of potential drugs and neuroprotective agents. Readily
accessible biomarkers capable of providing information about
disease status are expected to accelerate this progress. We iden-
tified hepatocyte nuclear factor (HNF4A) and polypyrimidine
tract binding protein 1 (PTBPT) mRNAs as promising blood bio-
markers for identifying early stage PD patients with high
diagnostic accuracy. Furthermore, HNF4A was identified as a
potential biomarker to monitor disease severity. Longitudinal
analysis demonstrated that HNF4A and PTBP1 are longitudinally
dynamic biomarkers that provide insights into the molecular
mechanisms underlying the altered insulin signaling in PD pa-
tients and may enable novel therapeutic strategies.
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studies (Table S1) were analyzed using Integrative Meta-Analysis
of Expression Data (INMEX), a web interface for the integrative
metaanalysis (13). The overall metaanalysis workflow used in this
study is shown in Fig. 14. Metaanalysis using a Fisher’s test
identified a total of 2,781 genes differentially expressed consis-
tently across four microarray studies. Among this group, 680
genes were up-regulated and 2,101 were down-regulated in
PD compared with healthy controls. The thy-1 cell-surface anti-
gen (THY1) and HNF4A were the most significant up-regulated
genes across the four microarray datasets. The complete list of
differentially expressed genes is provided in Dataset S1. There
were 921 gained genes uniquely identified in the metaanalysis
that show relatively weak but consistent expression across the
four datasets. A total of 491 genes were classified as lost genes
(i.e., genes identified as differentially expressed genes in in-
dividual datasets but not in the metaanalysis). A Venn diagram of
metaanalysis results is shown in Fig. 1B, and a heat map visuali-
zation of the top 20 genes across the different studies is displayed
in Fig. 1C.

Biological and Functional Analysis. To identify the overrepresented
biological processes dysregulated in blood of PD patients, we
performed a gene pathway analysis using NetworkAnalyst (14).
Pathway analysis was performed using the set of up- and down-
regulated genes separately. Up-regulated genes in blood of PD
were associated with the Kyoto Encyclopedia of Genes (KEGG)
pathways (P < 0.05), including bacterial invasion of epithelial
cells, mitogen-activated protein kinase-signaling pathway, fructose

A Microarrays

Meta-DE Individual-DE

¢

INMEX: Meta-analysis

Class  Microarrays

NetworkAnalyst PD GSE18838

BHC mGSE22491
GSE54536

Biomarker discovery W GSE6613
[T
C 2 0 -2 -4

Fig. 1. Network-based and transcriptomic metaanalysis. (A) Four indepen-
dent microarray datasets were downloaded from the GEO and preprocessed
in INMEX where metaanalysis was undertaken using the Fisher’s method.
Datasets were subsequently uploaded into NetworkAnalyst to perform
network and functional analysis and to identify key regulatory hub genes
across the multiple microarray studies. Finally, the most significant genes
were evaluated as biomakers for PD in blood samples obtained from two
independent cohorts of patients. (B) Venn diagram of differentially expressed
genes identified from the metaanalysis (Meta-DE) and those from each
individual microarray analysis (Individual-DE). (C) Heat map representation
of the top 20 differentially expressed genes across different microarrays
identified from the metaanalysis (row-wise comparison). The heat map was
rescaled to prevent domination by study-specific effects. HC, healthy con-
trols; PD, Parkinson’s disease.
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and mannose metabolism, T-cell receptor-signaling pathway,
mammalian target of rapamycin-signaling pathway, type 2 di-
abetes mellitus, and colorectal cancer. The most important hub
gene in terms of network topology measures of betweeness (BC)
and degree of centrality (DC) was HNF44 (BC =2,213; DC =
84) (Fig. 24).

In parallel, down-regulated genes in blood of PD patients were
associated with the KEGG pathways, including protein pro-
cessing in the endoplasmic reticulum (ER), Epstein-Barr virus
infection, and several types of cancer including prostate, endo-
metrial, and lung cancer. The most prominent hub gene in terms
of network topology measures was ubiquitin C (UBC) (BC =
495; DC = 1630), and PTBPI was the most down-regulated gene
across the four microarray datasets (Fig. 2B and Dataset S1).

Network-Based Metaanalysis. HNF4A was confirmed as potential
key hub gene in blood of PD by network-based metaanalysis
implemented in NetworkAnalyst (14). The most highly ranked
node across the four datasets based on network topology mea-
sures was HNF4A4 (BC = 329; DC = 35) followed by GATAI
(BC = 10.5; DC = 8). The resulting zero-order interaction net-
work contained 76 nodes and 81 edges (Fig. S1). In addition,
network-based metaanalysis identified the aberrant expression of
several splicing factors in PD patients (Fig. S2 4 and B). Among
the splicing factors, PTBPI was the most significantly down-
regulated gene in PD patients identified in the metaanalysis
(Fig. 2B, Fig. S2B, and Dataset S1).

To confirm the dysregulation of HNF4A and PTBP1 at the
protein level, we analyzed a protein microarray study in human
serum samples of PD (GSE29654) using NetworkAnalyst (15).
PTBP1 was significantly down-regulated in PD samples com-
pared with healthy controls (P = 0.002). Altered expression of
HNF4A was not confirmed in this protein microarray.

Evaluation of HNF4A and PTBP1 mRNAs in Blood of PD. To validate
the results obtained from the network-based metaanalysis, we
evaluated the most significant hub gene in the up-regulated
network, HNF4A, and the most down-regulated gene, PTBP1, as
potential biomarkers for PD. Relative abundance of HNF4A4 and
PTBPI mRNAs was measured in whole blood of PD patients
compared with healthy controls (HCs) from samples obtained
from two independent clinical trials, the Diagnostic and Prog-
nostic Biomarkers for Parkinson’s Disease (PROBE) and the
Harvard Biomarker Study (HBS). Quantitative PCR (qPCR)
assays revealed that HNF4A4 and PTBPI mRNAs were signifi-
cantly up- and down-regulated, respectively, in blood of PD
patients compared with HCs in both cohorts of study participants
at baseline (Fig. 3 A-D). Analysis of receiver operating charac-
teristic (ROC) was performed to evaluate the diagnostic accu-
racy of both biomarkers. ROC analysis for HNF4A and PTBP1
resulted in an area under the curve (AUC) of 0.72 and 0.82,
respectively (Fig. S3 4 and B). Combination of both biomarkers
resulted in an AUC value of 0.90 (Fig. S3C). A step-wise linear
discriminant analysis showed that PD patients can be classified
with 90% sensitivity and 80% specificity according to the following
canonical function: Dpp = 0.10 + 0.56*Xprgp1 — 0.20XynrFsa,
where Dpp is the discriminant score value and X is the mRNA
expression level for each biomarker multiplied by its respective
canonical coefficient.

Pearson correlation analysis demonstrated that relative abun-
dance of HNF4A and PTBPI was independent of other covariates
including age (HNF4A:r = -0.25, P = 0.9; PTBPI: r = 0.09, P =
0.59) and sex (HNF4A:r = -0.004, P = 0.97; PTBPI:r = 0.05, P =
0.76) in both cohorts of patients and body mass index (BMI)
(HNF4A: r = -0.005, P = 0.96; PTBPI: r = 014, P = 0.37) in
the HBS cohort. Correlation analysis revealed a significant nega-
tive correlation between HNF44 mRNA expression and PTBPI
mRNA (r = -0.20, P = 0.008, Fig. 4, Upper) and Hoehn and Yahr
stage (HY) at baseline (r = —0.32, P = 0.002, Fig. 4, Lower).
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Fig. 2. Network analysis of differentially expressed genes in blood of PD
patients. (A) Zero-order interaction network of genes up-regulated in blood
of PD patients (red). (B) Zero-order interaction network of genes down-
regulated in blood of PD patients (green).

Longitudinal Performance of HNF4A and PTBP1. To determine the
longitudinal performance of HNF4A and PTBPI, we measured
the relative abundance of each biomarker in HBS samples
collected at two time points. The estimated rate of change for
each biomarker was determined via a linear mixed-effects model
using the two time points (baseline and 3-y follow-up) collected
repeatedly between the same subjects adjusting for age, sex, and
BMI. Relative abundance of HNF44 mRNA significantly de-
creased over time in PD patients compared with HCs (p = —0.93,
P =0.002) whereas PTBPI mRNA increased in PD patients (§ =
0.33, P = 0.004) (Fig. 5). Relative abundance of HNF4A and
PTBPI mRNAs was significantly up-regulated in PD patients
compared with HCs in the follow-up period (Fig. 5 B and D).
Correlation between the relative abundance of each biomarker
and HY stage did not reach statistical significance in the longi-
tudinal analysis.

Santiago and Potashkin

Discussion

Biomarker discovery and validation is a crucial step toward
the improvement of clinical management of PD. Specifically,
biomarkers that are useful in tracking the clinical course of
PD are essential to the development of effective therapeutics.
Network analysis offers an unbiased approach to identify and
prioritize biologically meaningful biomarkers for several neuro-
degenerative diseases (9). Here we performed a network-based
metaanalysis integrating gene expression profiles of untreated,
sporadic, and PD patients harboring a LRRK2 (G2019S) mu-
tation to identify convergence among the different studies in
blood of PD. Transcriptomic metaanalysis identified 2,781 genes
consistently differentially expressed in blood of PD across four
microarray studies.

Network-based metaanalysis identified HNF4A as the most
significant hub gene across the four microarrray datasets.
HNF4A is a master metabolic regulatory factor responsible for
the activation of the hepatic gluconeogenesis (16) and has been
implicated in diabetes, inflammation, and lipid metabolism (17—
21). In this context, diabetes has been associated with PD in
numerous epidemiological studies (22-25). Although the exact
mechanism by which both diseases coexist is not clearly un-
derstood, a recent review suggests that dysregulation in common
molecular processes including the insulin signaling pathway, in-
flammation, ER stress, and mitochondrial dysfunction may lead
to both diseases (26). Numerous lines of evidence support a link
between PD and diabetes, including cellular, molecular, and
animal models and network-based approaches (27).

Interestingly, HNF4A was previously identified as a central
regulatory node of a splicing signature in blood of PD patients (2).
Furthermore, HNF4A interacts with peroxisome proliferator ac-
tivator receptor gamma (PPAR-y), a potential therapeutic target
in PD (28), in the activation of genes controlling the hepatic
gluconeogenesis (29). The second most prominent node across
the four datasets was GATAL (Fig. S1), a transcription factor
that is known to regulate a-synuclein (SNCA) transcription in

A PROBE Cohort B HBS Cohort
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Fig. 3. Evaluation of HNF4A and PTBP1 mRNAs as biomarkers for PD at
baseline. (A) Relative abundance of HNF4A mRNA in blood of PD patients
(black circles) compared with HCs (white circles) in samples from the PROBE
cohort. (B) Replication of biomarker expression in an independent set of
samples from patients enrolled in the HBS study. (C) Relative abundance of
PTBP1 mRNA in blood of PD patients compared with HC in samples from the
PROBE cohort. (D) Replication of PTBPT mRNA expression in an independent
set of samples from patients enrolled in the HBS study. Relative abundance
of each biomarker was calculated using GAPDH as a reference gene and HC
as calibrator. A Student t test (two-tailed) was used to estimate the signifi-
cance between PD cases and controls. Error bars represent 95% confidence
intervals.
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Fig. 4. Biomarker correlation analysis. (Upper) Pearson correlation analysis
between HNF4A mRNA and PTBPT mRNA in blood of PD patients (black
circles) and HC (white circles) in samples from PROBE and HBS. (Lower)
Correlation analysis between HNFAA mRNA and Hoehn and Yahr scale in PD
patients from both cohorts. Solid lines represent the linear regression of the
data and dashed lines indicate the 95% confidence of intervals.

erythroid precursor cells, thereby suggesting its potential as a
modifying agent in PD (30).

PTBPI was identified as the most significant down-regulated
gene across the four microarrays datasets. Interestingly, PTBP1
promotes stabilization and translation of insulin mRNA in
pancreatic p-cells (31). In this context, impaired insulin signaling,
decreased expression of insulin receptor mRNA, and insulin
resistance have been implicated in PD in several studies (26, 32—
34). Strikingly, PTBP1 regulates the transcription of the gluca-
gon-like peptide 1 (GLP-1), a secretory granule that potentiates
glucose-stimulated insulin secretion in pancreatic p-cells (31).
Pharmacological stimulation of GLP-1 receptors with drugs used
to treat diabetic patients, such as exenatide, elicits neuroprotective
effects in animal models of PD (35), and its therapeutic potential
has shown promise in clinical trials of PD (36-38).

We further evaluated HNF44 and PTBP! mRNAs as blood
biomarkers for PD. Relative abundance of HNF44 mRNA was
up-regulated whereas PTBPI mRNA was down-regulated in
blood of PD patients compared with healthy individuals in sam-
ples obtained from two independent clinical trials (Fig. 3 A-D).
Evaluation of biomarker performance showed that HNF4A4 and
PTBP]I can distinguish PD patients from HCs with 90% sensitivity
and 80% specificity (Fig. S3C). The diagnostic performance of
these two biomarkers is superior to the one afforded by previously

2260 ' | www.pnas.org/cgi/doi/10.1073/pnas. 1423573112

identified risk markers in blood of PD patients and current clinical
assessment (3, 39). The sensitivity of the two markers alone is also
greater than the splice variant-specific RNA blood biosignature
that included 13 risk markers (2).

HNF44 mRNA relative abundance significantly correlated
with PTBPI mRNA. We found a significant negative correlation
between HNF44 mRNA expression and the HY staging. Early
PD patients with a low HY scale rating (HY = 1) showed a sig-
nificantly higher up-regulation of HNF44 mRNA compared with
patients with a higher HY scale (HY = 3) (Fig. 4, Lower). This
finding suggests that HNF44 mRNA may be useful in identifying
patients at very early stages of PD when therapeutic intervention
may be most beneficial and in monitoring disease severity.

Longitudinal performance analysis showed that the relative
abundance of each biomarker significantly changed over time
in PD patients. For example, HNF44 mRNA significantly de-
creased whereas PTBP] mRNA increased in PD patients during
the 3-y follow-up (Fig. 5). The correlation between the relative
abundance of both biomarkers with HY stage did not reach
statistical significance in follow-up samples, however. One pos-
sible explanation is that the HY stage did not change in most of
the PD patients during the 3-y period, whereas the relative
abundance of the transcripts did change during this time period.
These results suggest that the abundance of HNF4A4 and PTBPI
mRNAs in blood may be more sensitive than assessment of
motor symptoms for monitoring disease progression. The dy-
namic change in expression over time of both biomarkers sug-
gests that they may be useful biomarkers in tracking the clinical
course of PD patients.

One potential caveat is that most of the PD patients were
medicated in this study; therefore, a potential confounding factor
introduced by PD medications cannot be ruled out. Nevertheless,
this finding is interesting in light of the evidence that indicates
that more than 50% of the PD patients are glucose intolerant
and patients with diabetes who develop PD usually have a higher
HY staging (40). Moreover, impaired glucose metabolism is
suggested to be an early event in sporadic PD (41). Given that
HNF4A plays a pivotal role in hepatic gluconeogenesis and
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Fig. 5. Longitudinal performance of HNF4A and PTBPT mRNAs in the HBS
study. (A) Individual trajectories for the relative abundance of HNF4A mRNA
over time for HC (blue) and PD patients (red) in the HBS study. (B) Average
HNF4A mRNA expression in PD patients compared with HCs calculated via
linear mixed-effects regression analysis adjusting for sex, age, and BMI. (C)
Individual trajectories for the relative abundance of PTBPT mRNA over time
for HCs and PD patients. (D) Average PTBP1T mRNA expression in PD patients
compared with HCs calculated via linear mixed-effects regression analysis.
Red and blue lines denote PD patients and HCs, respectively. TO and T2 in-
dicate baseline and 3-y follow-up period, respectively. Post hoc pair-wise
comparisons were performed using a Tukey test (**P = 0.0001, *P = 0.001).
Error bars represent SE.
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that PTBP1 regulates and stabilizes mRNA translation of
insulin in the pancreas, the inverse regulation of both genes
provides a molecular rationale for the impairment of insulin
signaling in PD patients, and these genes thus may be po-
tential therapeutic targets.

Analysis of a previous protein microarray study of serum
samples of PD patients (15) revealed that PTBP1 was signifi-
cantly down-regulated in PD patients compared with controls
(P = 0.02), but expression of HNF4A was not identified. Thus,
protein levels of PTBP1 may also be a potential diagnostic bio-
marker for PD.

The results from this metaanalysis also highlight the dysregu-
lation of several splicing factors in blood of PD patients. As the
spliceosome assembles, protein—protein interactions are highly
dynamic. One of the essential steps in the assembly of the spli-
ceosome is the formation of new protein interactions that change
the inactive B splicing complex to an active complex in which
SF3B2, SF3B3, and SF3BS5 form new interactions with proteins
of the U5 small nuclear ribonucleic particles (snRNPs) (42).
In this context, several of the core factors of the U2 snRNPs
were up-regulated in PD including SF3A1, SF3A2, SF3B1, and
SF3B4, whereas SF3B3 was down-regulated (Fig. 2 and Fig. S2).
These results suggest that assembly of the U2 snRNP that binds
to the 3’ splice site may be facilitated in PD, but the efficient
formation of an active splicing complex in PD is highly unlikely.
The results from the metaanalysis also revealed that many of the
regulatory splicing factors, core factors of the Ul, U4, US, and
U6 snRNPs, and helicases are down-regulated in PD, further
supporting the idea that splicing may be both inefficient and
dysregulated in PD (Fig. S2B). In this regard, aberrant alterna-
tive splicing in blood of PD has been highlighted in several
studies (2, 3, 43). In addition, heterogeneous nuclear ribonu-
cleoproteins, cap-binding proteins, and proteins of the exon
junction complex were down-regulated in PD, suggesting that
other posttranscriptional events such as cap-binding protein
complex formation, localization, maturation, nonsense-mediated
mRNA decay, and translation may be inefficient or dysregulated
in PD (Fig. 2 and Fig. S2).

The VDR was also present in the network of down-regulated
genes, thus confirming previous findings reporting lower levels of
VDR in blood and plasma of PD patients (1, 4, 44). In addition,
a subset of highly coexpressed genes associated with heme me-
tabolism previously identified in blood of two independent
populations (30), ALAS2, FECH, and BLVRB were also found to
be down-regulated in the metaanalysis (Fig. 2B). Collectively,
these results confirm the presence of a common molecular sig-
nature in blood of PD patients.

In summary, this study highlights the prominent convergence
among blood microarray studies from sporadic patients, de novo
patients, and the most common hereditary cause of PD, and
confirms the utility of blood as a useful source of biomarkers for
PD. In addition, our results strengthen the association between
PD and diabetes and provide insights into the molecular mech-
anisms underlying the impairment of insulin signaling observed
in PD patients. Furthermore, this study underscores the poten-
tial of network analysis as a powerful framework to gain insight
into the mechanisms underlying PD and to identify potential
therapeutic targets and biomarkers of disease severity. Evalua-
tion of HNF4A and PTBP1 mRNA:s in a larger prospective study
including patients at risk will be important to assess its clinical
utility as a diagnostic tool for PD. Further mechanistic studies
linking HNF4A and PTBPI in neurodegeneration are warranted.

Materials and Methods

Microarray Metaanalysis. Gene expression data from microarray studies
was downloaded from the Gene Expression Omnibus (GEO) and GEMMA
databases (45) by using the terms “Parkinson’s disease” and “blood” or
“transcriptional profiling” on May 31, 2014. Microarray studies using RNA
prepared from human blood with 10 samples or more were included in our
study. Only samples from PD patients and healthy controls were analyzed.
A total of four microarray studies met the inclusion criteria and were
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considered for subsequent analysis. The microarray studies analyzed in this
study are listed in Table S1. GSE6613 included 50 predominantly early
stage sporadic PD patients with a mean Hoehn and Yahr stage of 2.3 from
which 9 were untreated patients and 22 were age- and sex-matched healthy
controls. GSE8838 included 18 sporadic PD patients treated with different PD
medications and 12 HCs. GSE22491 included 10 PD patients carrying a LRRK2
mutation from which 1 patient was untreated and 7 HCs. GSE54536 included
five untreated PD patients and five HCs. We conducted a microarray meta-
analysis using INMEX (13) in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses guidelines for metaanalysis (46).
All gene probes were converted to a common Entrez ID using the gene/
probe conversion tool in INMEX. After matching all probes to a common
Entrez ID, all datasets were preprocessed using the log, transformation and
quantile normalization. Each individual dataset was visualized in box plots
to ensure identical distribution among the samples. Differential expression
analysis was performed with INMEX for each dataset independently using
a false discovery rate of 0.05, a significance of P < 0.05, and moderated t
test based on the Limma algorithm. In INMEX, the results from individual
microarray dataset analyses are only for reference comparison and not re-
quired for metaanalysis in the subsequent steps (13). For metaanalysis, we
used the Fisher's method with a significance level of P < 0.05 to combine
P values from the multiple datasets. Fisher’'s method is a widely used sta-
tistical approach in metaanalysis to combine P values from different studies
independently of the sample size (13, 47, 48). Gene ontology and functional
analysis was performed using NetworkAnalyst (14).

Network-Based Metaanalysis. Network-based metaanalysis was performed us-
ing NetworkAnalyst (14). Microarray datasets were processed as described
above. Briefly, microarray datasets were preprocessed by a log, transformation
followed by quantile normalization. Duplicate genes were replaced by their
mean value. We used a significance value of P < 0.05 and a log, fold change of
1 as a cutoff value. Network construction was restricted to contain only the
original seed proteins.

Information About Study Participants. The Institutional Review Boards of
Rosalind Franklin University of Medicine and Science approved the study
protocol. Written informed consent was received from all participants.
Clinical characteristics of the participants used in this study have been
reported elsewhere (2, 3, 10). Briefly, 51 PD patients (29 men, 22 women;
mean age at enrollment 63.16 + 6.42; Hoehn and Yahr scale 2 + 0.28) and 45
healthy age-matched controls (24 male, 21 women; mean age at enroliment
65.12 + 8.60) enrolled in PROBE (#NCT00653783). Clinical diagnosis of PD
was based on the United Kingdom Parkinson’s Disease Society Brain Bank
criteria. Healthy individuals had no history of neurological disease and
a Mini-Mental State Examination test score higher than 27. Inclusion and
exclusion criteria for patients enrolled in the PROBE study have been
reported elsewhere (2). As an independent replication cohort of patients, we
used 96 individuals, including 50 PD patients (31 men, 19 women; Hoehn and
Yahr scale 1.97 + 0.62; mean age at enrollment 63.12 + 8.96; mean age at
onset 58.75 + 10.17) and 46 healthy age-matched controls (26 men, 20
women; mean age at enrollment 64.28 + 10.42) enrolled in the HBS. Three-
year follow-up samples from cases and controls enrolled in the HBS were
collected and analyzed in this study. Diagnosis of cases and controls was
assessed at each visit to ensure high diagnostic accuracy. Additional in-
formation about the participants enrolled in the HBS clinical trial was pub-
lished previously (49) and can be found at www.neurodiscovery.harvard.
edu/research/biomarkers.html.

Quantitative Real-Time Polymerase Chain Reactions. Blood was collected and
prepared as described using the PAXgene Blood RNA system (Qiagen) (1, 2).
Samples with RNA integrity values >7.0 and ratio of absorbances at 260/280
nm between 1.7 and 2.4 were used in the current study. A total of 1 ug of
RNA was reversed-transcribed using the High Capacity RNA Transcription Kit
(Life Technologies). Primers were designed using Primer Express software
and ordered from Life Technologies. The primer sequences used in this study
are as follows: GAPDH—forward, 5'-CAACGGATTTGGTCGTATTGG-3'; reverse,
5'-TGATGGCAACAATATCCACTTTACC-3; HNF4A—forward, 5-CAGAATGAGC-
GGGACCGGATC-3'; reverse: 5'-CAGCAGCTGCTCCTTCATGGAC-3'; and PTBP1—
forward, 5'-GCTCAGGATCATCGTGGAGAA-3'; reverse, 5-ATCTTCAACACTG-
TGCCGAACTT-3'. Quantitative PCR assays were carried out using 25-ulL reac-
tions containing Power SYBR Green master mix (Life Technologies), primer
at a concentration of 5 uM and nuclease-free water. PCR reactions were
amplified using a DNA engine Opticon 2 Analyzer (Bio-Rad Life Sciences).
Amplification conditions and detailed description of qPCR experiments are
reported elsewhere (2, 3).
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Statistical Analysis. Network-based microarray metaanalysis was performed
using INMEX and NetworkAnalyst. A Student t test (two-tailed) was used to
estimate the significance between PD cases and controls for numerical var-
iables. Pearson correlation analysis was used to determine statistical signif-
icance for HNF4A and PTBP1 adjusting for sex, age, Hoehn and Yahr scale in
both cohorts, and BMI in the HBS study. An ROC curve analysis was used to
evaluate the diagnostic accuracy. A step-wise linear discriminant analysis
was performed to determine the sensitivity and specificity values for the
linear combination of both biomarkers. Power analyses of completed
experiments were performed to demonstrate that the sample size used in
this study allowed the detection of a difference of 0.5 in fold change with
a power of 99% and a significance of 0.05. A P value less than 0.05 was
regarded as statistically significant. For the longitudinal analysis, we used
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